A Hybrid Particle Swarm and Ant Colony Optimization for Design of Truss Structures

نویسندگان

  • A. Kaveh
  • S. Talatahari
چکیده

This paper presents a particle swarm ant colony optimization for design of truss structures. The algorithm is based on the particle swarm optimizer with passive congregation and ant colony optimization. The particle swarm ant colony optimization applies the particle swarm optimizer with passive congregation for global optimization and ant colony approach is employed to update positions of particles to attain rapidly the feasible solution space. Ant colony optimization works as a local search, wherein, ants apply pheromone-guided mechanism to update the positions found by the particles in the earlier stage. A new relation is defined for the inertia weight, and the terminating criterion is changed in the way that after decreasing the movements of particles, the search process stops. With these changes, the number of iterations does not increase. The proposed method is tested on several benchmark trusses from literature. The result comparisons with particle swarm optimizer, particle swarm optimizer with passive congregation and other optimization algorithms demonstrate the effectiveness of the presented method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Improved Dolphin Echolocation and Ant Colony Optimization for Optimal Discrete Sizing of Truss Structures

This paper presents a robust hybrid improved dolphin echolocation and ant colony optimization algorithm (IDEACO) for optimization of truss structures with discrete sizing variables. The dolphin echolocation (DE) is inspired by the navigation and hunting behavior of dolphins. An improved version of dolphin echolocation (IDE), as the main engine, is proposed and uses the positive attributes of an...

متن کامل

A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables

A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...

متن کامل

A HYBRID ALGORITHM FOR SIZING AND LAYOUT OPTIMIZATION OF TRUSS STRUCTURES COMBINING DISCRETE PSO AND CONVEX APPROXIMATION

An efficient method for size and layout optimization of the truss structures is presented in this paper. In order to this, an efficient method by combining an improved discrete particle swarm optimization (IDPSO) and method of moving asymptotes (MMA) is proposed. In the hybrid of IDPSO and MMA, the nodal coordinates defining the layout of the structure are optimized with MMA, and afterwards the...

متن کامل

PARTICLE SWARM-GROUP SEARCH ALGORITHM AND ITS APPLICATION TO SPATIAL STRUCTURAL DESIGN WITH DISCRETE VARIABLES

Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discr...

متن کامل

ANT COLONY SEARCH METHOD IN PRACTICAL STRUCTURAL OPTIMIZATION

This paper is concerned with application and evaluation of ant colony optimization (ACO) method to practical structural optimization problems. In particular, a size optimum design of pin-jointed truss structures is considered with ACO such that the members are chosen from ready sections for minimum weight design. The application of the algorithm is demonstrated using two design examples with pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008